Настройка. Установка. Windows. Софт и утилиты

Базовые понятия реляционной модели данных. Реляционные базы данных термины и определения

Этой статьей мы начинаем новый цикл, посвященный базам данных, современным технологиям доступа к данным и их обработки. На протяжении данного цикла мы планируем рассмотреть наиболее популярные настольные и серверные системы управления базами данных (СУБД), механизмы доступа к данным (OLD DB, ADO, BDE и др.) и утилиты для работы с базами данных (средства администрирования, генераторы отчетов, средства графического представления данных). Кроме того, мы планируем уделить внимание методам публикации данных в Internet, а также таким популярным способам обработки и хранения данных, как OLAP (On-Line Analytical Processing), и созданию хранилищ данных (Data Warehousing).

В данной статье мы рассмотрим основные понятия и принципы, лежащие в основе систем управления базами данных. Мы обсудим реляционную модель данных, понятие ссылочной целостности и принципы нормализации данных, а также средства проектирования данных. Затем мы расскажем, какими бывают СУБД, какие объекты могут содержаться в базах данных и каким образом осуществляются запросы к этим объектам.

Основные концепции реляционных баз данных

Начнем с основных понятий СУБД и краткого введения в теорию реляционных баз данных - наиболее популярного сейчас способа хранения данных.

Реляционная модель данных

Реляционная модель данных была предложена Е.Ф.Коддом (Dr. E.F.Codd), известным исследователем в области баз данных, в 1969 году, когда он был сотрудником фирмы IBM. Впервые основные концепции этой модели были опубликованы в 1970 г. «A Relational Model of Data for Large Shared Data Banks», CACM, 1970, 13 N 6).

Реляционная база данных представляет собой хранилище данных, содержащее набор двухмерных таблиц. Набор средств для управления подобным хранилищем называется реляционной системой управления базами данных (РСУБД) . РСУБД может содержать утилиты, приложения, сервисы, библиотеки, средства создания приложений и другие компоненты.

Любая таблица реляционной базы данных состоит из строк (называемых также записями ) и столбцов (называемых также полями ). В данном цикле мы будем использовать обе пары терминов.

Строки таблицы содержат сведения о представленных в ней фактах (или документах, или людях, одним словом, - об однотипных объектах). На пересечении столбца и строки находятся конкретные значения содержащихся в таблице данных.

Данные в таблицах удовлетворяют следующим принципам:

  1. Каждое значение, содержащееся на пересечении строки и колонки, должно быть атомарным (то есть не расчленяемым на несколько значений).
  2. Значения данных в одной и той же колонке должны принадлежать к одному и тому же типу, доступному для использования в данной СУБД.
  3. Каждая запись в таблице уникальна, то есть в таблице не существует двух записей с полностью совпадающим набором значений ее полей.
  4. Каждое поле имеет уникальное имя.
  5. Последовательность полей в таблице несущественна.
  6. Последовательность записей также несущественна.

Несмотря на то что строки таблиц считаются неупорядоченными, любая система управления базами данных позволяет сортировать строки и колонки в выборках из нее нужным пользователю способом.

Поскольку последовательность колонок в таблице несущественна, обращение к ним производится по имени, и эти имена для данной таблицы уникальны (но не обязаны быть уникальными для всей базы данных).

Итак, теперь мы знаем, что реляционные базы данных состоят из таблиц. Для иллюстрации некоторых теоретических положений и для создания примеров нам необходимо выбрать какую-нибудь базу данных. Чтобы не «изобретать колесо», мы воспользуемся базой данных NorthWind, входящей в комплект поставки Microsoft SQL Server и Microsoft Access.

Теперь давайте рассмотрим связи между таблицами.

Ключи и связи

Давайте взглянем на фрагмент таблицы Customers (клиенты) из базы данных NorthWind (мы удалили из нее поля, несущественные для иллюстрации связей между таблицами).

Поскольку строки в таблице неупорядочены, нам нужна колонка (или набор из нескольких колонок) для уникальной идентификации каждой строки. Такая колонка (или набор колонок) называется первичным ключом (primary key ). Первичный ключ любой таблицы обязан содержать уникальные непустые значения для каждой строки.

Если первичный ключ состоит из более чем одной колонки, он называется составным первичным ключом (composite primary key ).

Типичная база данных обычно состоит из нескольких связанных таблиц. Фрагмент таблицы Orders (заказы).

Поле CustomerID этой таблицы содержит идентификатор клиента, разместившего данный заказ. Если нам нужно узнать, как называется компания, разместившая заказ, мы должны поискать это же значение идентификатора клиента в поле CustomerID таблицы Customers и в найденной строке прочесть значение поля CompanyName. Иными словами, нам нужно связать две таблицы, Customers и Orders, по полю CustomerID. Колонка, указывающая на запись в другой таблице, связанную с данной записью, называется внешним ключом (foreign key ). Как видим, в случае таблицы Orders внешним ключом является колонка CustomerID (рис. 1).

Иными словами, внешний ключ - это колонка или набор колонок, чьи значения совпадают с имеющимися значениями первичного ключа другой таблицы.

Подобное взаимоотношение между таблицами называется связью (relationship ). Связь между двумя таблицами устанавливается путем присваивания значений внешнего ключа одной таблицы значениям первичного ключа другой.

Если каждый клиент в таблице Customers может разместить только один заказ, говорят, что эти две таблицы связаны соотношением один-к-одному (one-to-one relationship ). Если же каждый клиент в таблице Customers может разместить ноль, один или много заказов, говорят, что эти две таблицы связаны соотношением один-ко-многим (one-to-many relationship ) или соотношением master-detail . Подобные соотношения между таблицами используются наиболее часто. В этом случае таблица, содержащая внешний ключ, называется detail-таблицей , а таблица, содержащая первичный ключ, определяющий возможные значения внешнего ключа, называется master-таблицей .

Группа связанных таблиц называется схемой базы данных (database schema ). Информация о таблицах, их колонках (имена, тип данных, длина поля), первичных и внешних ключах, а также иных объектах базы данных, называется метаданными (metadata ).

Любые манипуляции с данными в базах данных, такие как выбор, вставка, удаление, обновление данных, изменение или выбор метаданных, называются запросом к базе данных (query ). Обычно запросы формулируются на каком-либо языке, который может быть как стандартным для разных СУБД, так и зависящим от конкретной СУБД.

Ссылочная целостность

Выше мы уже говорили о том, что первичный ключ любой таблицы должен содержать уникальные непустые значения для данной таблицы. Это утверждение является одним из правил ссылочной целостности (referential integrity ). Некоторые (но далеко не все) СУБД могут контролировать уникальность первичных ключей. Если СУБД контролирует уникальность первичных ключей, то при попытке присвоить первичному ключу значение, уже имеющееся в другой записи, СУБД сгенерирует диагностическое сообщение, обычно содержащее словосочетание primary key violation . Это сообщение в дальнейшем может быть передано в приложение, с помощью которого конечный пользователь манипулирует данными.

Если две таблицы связаны соотношением master-detail , внешний ключ detail- таблицы должен содержать только те значения, которые уже имеются среди значений первичного ключа master- таблицы. Если корректность значений внешних ключей не контролируется СУБД, можно говорить о нарушении ссылочной целостности. В этом случае, если мы удалим из таблицы Customers запись, имеющую хотя бы одну связанную с ней detail- запись в таблице Orders, это приведет к тому, что в таблице Orders окажутся записи о заказах, размещенных неизвестно кем. Если же СУБД контролирует корректность значений внешних ключей, то при попытке присвоить внешнему ключу значение, отсутствующее среди значений первичных ключей master-таблицы, либо при удалении или модификации записей master-таблицы, приводящих к нарушению ссылочной целостности, СУБД сгенерирует диагностическое сообщение, обычно содержащее словосочетание foreign key violation , которое в дальнейшем может быть передано в пользовательское приложение.

Большинство современных СУБД, например Microsoft Access 97, Microsoft Access 2000 и Microsoft SQL Server 7.0, способны контролировать соблюдение правил ссылочной целостности, если таковые описаны в базе данных. Для этой цели подобные СУБД используют различные объекты баз данных (мы обсудим их чуть позже). В этом случае все попытки нарушить правила ссылочной целостности будут подавляться с одновременной генерацией диагностических сообщений или исключений (database exceptions ).

Введение в нормализацию данных

Процесс проектирования данных представляет собой определение метаданных в соответствии с задачами информационной системы, в которой будет использоваться будущая база данных. Подробности о том, как производить анализ предметной области, создавать диаграммы «сущность-связь» (ERD - entity-relationship diagrams ) и модели данных, выходят за рамки данного цикла. Интересующиеся этими вопросами могут обратиться, например, к книге К.Дж.Дейта «Введение в системы баз данных» («Диалектика», Киев, 1998).

В данной статье мы обсудим лишь один из основных принципов проектирования данных - принцип нормализации .

Нормализация представляет собой процесс реорганизации данных путем ликвидации повторяющихся групп и иных противоречий в хранении данных с целью приведения таблиц к виду, позволяющему осуществлять непротиворечивое и корректное редактирование данных.

Теория нормализации основана на концепции нормальных форм. Говорят, что таблица находится в данной нормальной форме, если она удовлетворяет определенному набору требований. Теоретически существует пять нормальных форм, но на практике обычно используются только первые три. Более того, первые две нормальные формы являются по существу промежуточными шагами для приведения базы данных к третьей нормальной форме.

Первая нормальная форма

Проиллюстрируем процесс нормализации на примере, использующем данные из базы NorthWind. Предположим, что мы регистрируем все заказанные продукты в следующей таблице . Структура этой таблицы имеет вид (рис. 2).

Чтобы таблица соответствовала первой нормальной форме, все значения ее полей должны быть атомарными, и

все записи - уникальными. Поэтому любая реляционная таблица, в том числе и таблица OrderedProducts, по определению, уже находится в первой нормальной форме.

Тем не менее эта таблица содержит избыточные данные, например, одни и те же сведения о клиенте повторяются в записи о каждом заказанном продукте. Результатом избыточности данных являются аномалии модификации данных- проблемы, возникающие при добавлении, изменении или удалении записей. Например, при редактировании данных в таблице OrderedProducts могут возникнуть следующие проблемы:

  • Адрес конкретного клиента может содержаться в базе данных только тогда, когда клиент заказал хотя бы один продукт.
  • При удалении записи о заказанном продукте одновременно удаляются сведения о самом заказе и о клиенте, его разместившем.
  • Если, не дай бог, заказчик сменил адрес, придется обновить все записи о заказанных им продуктах.

Некоторые из этих проблем могут быть решены путем приведения базы данных ко второй нормальной форме .

Вторая нормальная форма

Говорят, что реляционная таблица находится во второй нормальной форме , если она находится в первой нормальной форме и ее неключевые поля полностью зависят от всего первичного ключа.

Таблица OrderedProducts находится в первой, но не во второй нормальной форме, так как поля CustomerID, Address и OrderDate зависят только от поля OrderID, являющегося частью составного первичного ключа (OrderID, ProductID).

Чтобы перейти от первой нормальной формы ко второй, нужно выполнить следующие шаги:

  1. Определить, на какие части можно разбить первичный ключ, так чтобы некоторые из неключевых полей зависели от одной из этих частей (эти части не обязаны состоять из одной колонки! ).
  2. Создать новую таблицу для каждой такой части ключа и группы зависящих от нее полей и переместить их в эту таблицу. Часть бывшего первичного ключа станет при этом первичным ключом новой таблицы.
  3. Удалить из исходной таблицы поля, перемещенные в другие таблицы, кроме тех их них, которые станут внешними ключами.

Например, для приведения таблицы OrderedProducts ко второй нормальной форме, нужно переместить поля CustomerID, Address и OrderDate в новую таблицу (назовем ее OrdersInfo), при этом поле OrderID станет первичным ключом новой таблицы (рис. 3).

В результате новые таблицы приобретут такой вид. Однако таблицы, находящиеся во второй, но не в третьей нормальной форме, по-прежнему содержат аномалии модификации данных. Вот каковы они, например, для таблицы OrdersInfo:

  • Адрес конкретного клиента по-прежнему может содержаться в базе данных только тогда, когда клиент заказал хотя бы один продукт.
  • Удаление записи о заказе в таблице OrdersInfo приведет к удалению записи о самом клиенте.
  • Если заказчик сменил адрес, придется обновить несколько записей (хотя, как правило, их меньше, чем в предыдущем случае).

Устранить эти аномалии можно путем перехода к третьей нормальной форме .

Третья нормальная форма

Говорят, что реляционная таблица находится в третьей нормальной форме , если она находится во второй нормальной форме и все ее неключевые поля зависят только от первичного ключа.

Таблица OrderDetails уже находится в третьей нормальной форме. Неключевое поле Quantity полностью зависит от составного первичного ключа (OrderID, ProductID). Однако таблица OrdersInfo в третьей нормальной форме не находится, так как содержит зависимость между неключевыми полями (она называется транзитивной зависимостью - transitivedependency ) - поле Address зависит от поля CustomerID.

Чтобы перейти от второй нормальной формы к третьей, нужно выполнить следующие шаги:

  • Определить все поля (или группы полей), от которых зависят другие поля.
  • Создать новую таблицу для каждого такого поля (или группы полей) и группы зависящих от него полей и переместить их в эту таблицу. Поле (или группа полей), от которого зависят все остальные перемещенные поля, станет при этом первичным ключом новой таблицы.
  • Удалить перемещенные поля из исходной таблицы, оставив лишь те из них, которые станут внешними ключами.

Для приведения таблицы OrdersInfo к третьей нормальной форме создадим новую таблицу Customers и переместим в нее поля CustomerID и Address. Поле Address из исходной таблицы удалим, а поле CustomerID оставим - теперь это внешний ключ (рис. 4).

Итак, после приведения исходной таблицы к третьей нормальной форме таблиц стало три - Customers, Orders и OrderDetails.

Преимущества нормализации

Нормализация устраняет избыточность данных, что позволяет снизить объем хранимых данных и избавиться от описанных выше аномалий их изменения. Например, после приведения рассмотренной выше базы данных к третьей нормальной форме налицо следующие улучшения:

  • Сведения об адресе клиента можно хранить в базе данных, даже если это только потенциальный клиент, еще не разместивший ни одного заказа.
  • Сведения о заказанном продукте можно удалять, не опасаясь удаления данных о клиенте и заказе.

Изменение адреса клиента или даты регистрации заказа теперь требует изменения только одной записи.

Как проектируют базы данных

Обычно современные СУБД содержат средства, позволяющие создавать таблицы и ключи. Существуют и утилиты, поставляемые отдельно от СУБД (и даже обслуживающие несколько различных СУБД одновременно), позволяющие создавать таблицы, ключи и связи.

Еще один способ создать таблицы, ключи и связи в базе данных - это написание так называемого DDL-сценария (DDL - Data Definition Language; о нем мы поговорим чуть позже).

Наконец, есть еще один способ, который становится все более и более популярным, - это использование специальных средств, называемых CASE-средствами (CASE означает Computer-Aided System Engineering). Существует несколько типов CASE-средств, но для создания баз данных чаще всего используются инструменты для создания диаграмм «сущность-связь» (entity-relationship diagrams, E/R diagrams). С помощью этих инструментов создается так называемая логическая модель данных, описывающая факты и объекты, подлежащие регистрации в ней (в таких моделях прототипы таблиц называются сущностями (entities), а поля - их атрибутами (attributes). После установления связей между сущностями, определения атрибутов и проведения нормализации, создается так называемая физическая модель данных для конкретной СУБД, в которой определяются все таблицы, поля и другие объекты базы данных. После этого можно сгенерировать либо саму базу данных, либо DDL-сценарий для ее создания.

Список наиболее популярных в настоящее время CASE-средств .

Таблицы и поля

Таблицы поддерживаются всеми реляционными СУБД, и в их полях могут храниться данные разных типов. Наиболее часто встречающиеся типы данных .

Индексы

Чуть выше мы говорили о роли первичных и внешних ключей. В большинстве реляционных СУБД ключи реализуются с помощью объектов, называемых индексами, которые можно определить как список номеров записей, указывающий, в каком порядке их предоставлять.

Мы уже знаем, что записи в реляционных таблицах неупорядочены. Тем не менее любая запись в конкретный момент времени имеет вполне определенное физическое местоположение в файле базы данных, хотя оно и может изменяться в процессе редактирования данных или в результате «внутренней деятельности» самой СУБД.

Предположим, в какой-то момент времени записи в таблице Customers хранились в таком порядке .

Допустим, нам нужно получить эти данные упорядоченными по полю CustomerID. Опустив технические детали, мы можем сказать, что индекс по этому полю - это последовательность номеров записей, в соответствии с которой их нужно выводить, то есть:

1,6,4,2,5,3

Если же мы хотим упорядочить записи по полю Address, последовательность номеров записей будет другой:

5,4,1,6,2,3

Хранение индексов требует существенно меньше места, чем хранение по-разному отсортированных версий самой таблицы.

Если нам нужно найти данные о клиентах, у которых CustomerID начинается с символов «BO», мы можем найти с помощью индекса местоположение этих записей (в данном случае 2 и 5 (очевидно, что в индексе номера этих записей идут подряд), а затем прочесть именно вторую и пятую записи, вместо того чтобы просматривать всю таблицу. Таким образом, использование индексов снижает время выборки данных.

Мы уже говорили о том, что физическое местоположение записей может изменяться в процессе редактирования данных пользователями, а также в результате манипуляций с файлами базы данных, проводимых самой СУБД (например, сжатие данных, сборка «мусора» и др.). Если при этом происходят соответствующие изменения и в индексе, он называется поддерживаемым и такие индексы используются в большинстве современных СУБД. Реализация таких индексов приводит к тому, что любое изменение данных в таблице влечет за собой изменение связанных с ней индексов, а это увеличивает время, требующееся СУБД для проведения таких операций. Поэтому при использовании таких СУБД следует создавать только те индексы, которые реально необходимы, и руководствоваться при этом тем, какие запросы будут встречаться наиболее часто.

Ограничения и правила

Большинство современных серверных СУБД содержат специальные объекты, называемые ограничениями (constraints), или правилами (rules). Эти объекты содержат сведения об ограничениях, накладываемых на возможные значения полей. Например, с помощью такого объекта можно установить максимальное или минимальное значение для данного поля, и после этого СУБД не позволит сохранить в базе данных запись, не удовлетворяющую данному условию.

Помимо ограничений, связанных с установкой диапазона изменения данных, существуют также ссылочные ограничения (referential constraints, например связь master-detail между таблицами Customers и Orders может быть реализована как ограничение, содержащее требование, чтобы значение поля CustomerId (внешний ключ) в таблице Orders было равно одному из уже имеющихся значений поля CustomerId таблицы Customers.

Отметим, что далеко не все СУБД поддерживают ограничения. В этом случае для реализации аналогичной функциональности правил можно либо использовать другие объекты (например, триггеры), либо хранить эти правила в клиентских приложениях, работающих с этой базой данных.

Представления

Практически все реляционные СУБД поддерживают представления (views). Этот объект представляет собой виртуальную таблицу, предоставляющую данные из одной или нескольких реальных таблиц. Реально он не содержит никаких данных, а только описывает их источник.

Нередко такие объекты создаются для хранения в базах данных сложных запросов. Фактически view - это хранимый запрос.

Создание представлений в большинстве современных СУБД осуществляется специальными визуальными средствами, позволяющими отображать на экране необходимые таблицы, устанавливать связи между ними, выбирать отображаемые поля, вводит ограничения на записи и др.

Нередко эти объекты используются для обеспечения безопасности данных, например, путем разрешения просмотра данных с их помощью без предоставления доступа непосредственно к таблицам. Помимо этого некоторые представления объекты могут возвращать разные данные в зависимости, например, от имени пользователя, что позволяет ему получать только интересующие его данные.

Триггеры и хранимые процедуры

Триггеры и хранимые процедуры, поддерживаемые в большинстве современных серверных СУБД, используются для хранения исполняемого кода.

Хранимая процедура - это специальный вид процедуры, который выполняется сервером баз данных. Хранимые процедуры пишутся на процедурном языке, который зависит от конкретной СУБД. Они могут вызывать друг друга, читать и изменять данные в таблицах, и их можно вызвать из клиентского приложения, работающего с базой данных.

Хранимые процедуры обычно используются при выполнении часто встречающихся задач (например, сведение бухгалтерского баланса). Они могут иметь аргументы, возвращать значения, коды ошибок и иногда наборы строк и колонок (такой набор данных иногда называется термином dataset). Однако последний тип процедур поддерживается не всеми СУБД.

Триггеры также содержат исполняемый код, но их, в отличие от процедур, нельзя вызвать из клиентского приложения или хранимой процедуры. Триггер всегда связан с конкретной таблицей и выполняется тогда, когда при редактировании этой таблицы наступает событие, с которым он связан (например, вставка, удаление или обновление записи).

В большинстве СУБД, поддерживающих триггеры, можно определить несколько триггеров, выполняющихся при наступлении одного и того же события, и определить порядок из выполнения.

Объекты для генерации первичных ключей

Очень часто первичные ключи генерируются самой СУБД. Это более удобно, чем их генерация в клиентском приложении, так как при многопользовательской работе генерация ключей с помощью СУБД - это единственный способ избежать дублирования ключей и получать их последовательные значения.

В разных СУБД для генерации ключей используются разные объекты. Некоторые из таких объектов хранят целое число и правила, по которым генерируется следующее за ним значение, -обычно это выполняется с помощью триггеров. Такие объекты поддерживаются, например, в Oracle (в этом случае они называются последовательностями - sequences) и в IB Database (в этом случае они называются генераторами - generators).

Некоторые СУБД поддерживают специальные типы полей для первичных ключей. При добавлении записей такие поля заполняются автоматически последовательными значениями (обычно целыми). В случае Microsoft Access и Microsoft SQL Server такие поля называются Identity fields, а в случае Corel Paradox - автоинкрементными полями (Autoincrement fields).

Пользователи и роли

Предотвращение несанкционированного доступа к данным является серьезной проблемой, которая решается разными способами. Самый простой - это парольная защита либо всей таблицы, либо некоторых ее полей (такой механизм поддерживается, например, в Corel Paradox).

В настоящее время более популярен другой способ защиты данных - создание списка пользователей (users) с именами (user names) и паролями (passwords). В этом случае любой объект базы данных принадлежит конкретному пользователю, и этот пользователь предоставляет другим пользователям разрешение на чтение или модификацию данных из этого объекта либо на модификацию самого объекта. Этот способ применяется во всех серверных и некоторых настольных СУБД (например, Microsoft Access).

Некоторые СУБД, в основном серверные, поддерживают не только список пользователей, но и роли (roles). Роль - это набор привилегий. Если конкретный пользователь получает одну или несколько ролей, а вместе с ними - и все привилегии, определенные для данной роли.

Запросы к базам данных

Модификация и выбор данных, изменение метаданных и некоторые другие операции осуществляются с помощью запросов (query). Большинство современных СУБД (и некоторые средства разработки приложений) содержат средства для генерации таких запросов.

Один из способов манипуляции данными называется «queries by example» (QBE) - запрос по образцу. QBE представляет собой средство для визуального связывания таблиц и выбора полей, которые следует отобразить в результате запроса.

В большинстве СУБД (за исключением некоторых настольных) визуальное построение запроса с помощью QBE приводит к генерации текста запроса с помощью специального языка запросов SQL (Structured Query Language). Можно также написать запрос непосредственно на языке SQL.

Курсоры

Нередко результатом запроса является набор из строк и столбцов (dataset). В отличие от реляционной таблицы в таком наборе строки упорядочены, и их порядок определяется исходным запросом (и иногда - наличием индексов). Поэтому мы можем определить текущую строку в таком наборе и указатель на нее, который называется курсором (cursor).

Большинство современных СУБД поддерживают так называемые двунаправленные курсоры (bi-directional cursors), позволяющие перемещаться по результирующему набору данных как вперед, так и назад. Однако некоторые СУБД поддерживают только однонаправленные курсоры, позволяющие перемещаться по набору данных только вперед.

Язык SQL

Structured Query Language (SQL) - это непроцедурный язык, используемый для формулировки запросов к базам данных в большинстве современных СУБД и в настоящий момент являющийся индустриальным стандартом.

Непроцедурность языка означает, что на нем можно указать, что нужно сделать с базой данных, но нельзя описать алгоритм этого процесса. Все алгоритмы обработки SQL-запросов генерируются самой СУБД и не зависят от пользователя. Язык SQL состоит из набора операторов, которые можно разделить на несколько категорий:

  • Data Definition Language (DDL) - язык определения данных, позволяющий создавать, удалять и изменять объекты в базах данных
  • Data Manipulation Language (DML) - язык управления данными, позволяющий модифицировать, добавлять и удалять данные в имеющихся объектах базы данных
  • Data Control Languages (DCL) - язык, используемый для управления пользовательскими привилегиями
  • Transaction Control Language (TCL) - язык для управления изменениями, сделанными группами операторов
  • Cursor Control Language (CCL) - операторы для определения курсора, подготовки операторов SQL к выполнению и некоторых других операций.

Более подробно о языке SQL вы расскажем в одной из следующих статей этого цикла.

Функции, определяемые пользователем

Некоторые СУБД позволяют использовать функции, определяемые пользователем (UDF-User-Defined Functions). Эти функции, как правило, хранятся во внешних библиотеках и должны быть зарегистрированы в базе данных, после чего их можно использовать в запросах, триггерах и хранимых процедурах.

Поскольку функции, определяемые пользователем, содержатся в библиотеках, их можно создавать с помощью любого средства разработки, позволяющего создавать библиотеки для платформы, на которой функционирует данная СУБД.

Транзакции

Транзакция (Transaction) - это группа операций над данными, которые либо выполняются все вместе, либо все вместе отменяются.

Завершение (Commit) транзакции означает, что все операции, входящие в состав транзакции, успешно завершены, и результат их работы сохранен в базе данных.

Откат (Rollback) транзакции означает, что все уже выполненные операции, входящие в состав транзакции, отменяются и все объекты базы данных, затронутые этими операциями, возвращены в исходное состояние. Для реализации возможности отката транзакций многие СУБД поддерживают запись в log-файлы, позволяющие восстановить исходные данные при откате.

Транзакция может состоять из нескольких вложенных транзакций.

Некоторые СУБД поддерживают двухфазное завершение транзакций (two-phase commit) - процесс, позволяющий осуществлять транзакции над несколькими базами данных, относящихся к одной и той же СУБД.

Для поддержки распределенных транзакций (то есть транзакций над базами данных, управляемых разными СУБД), существуют специальные средства, называемые мониторами транзакций (transaction monitors).

Заключение

В данной статье мы обсудили основные концепции построения реляционных СУБД, базовые принципы проектирования данных, а также рассказали о том, какие объекты могут быть созданы в базах данных.

В следующей статье мы познакомим наших читателей с наиболее популярными настольными СУБД: dBase, Paradox, Access, Visual FoxPro, Works и обсудим их основные возможности.

КомпьютерПресс 3"2000

Основными понятиями реляционных баз данных являются тип данных, домен, атрибут, кортеж, первичный ключ и отношение. Покажем смысл этих понятий на примере отношения СОТРУДНИКИ,содержащего информацию о сотрудниках некоторой организации:

1. Тип данных

Понятие тип данных в реляционной модели данных полностью адекватно понятию типа данных в языках программирования. Обычно в современных реляционных БД допускается хранение символьных, числовых данных, битовых строк, специализированных числовых данных (таких как "деньги"), а также специальных "темпоральных" данных (дата, время, временной интервал). Достаточно активно развивается подход к расширению возможностей реляционных систем абстрактными типами данных (соответствующими возможностями обладают, например, системы семейства Ingres/Postgres). В нашем примере мы имеем дело с данными трех типов: строки символов, целые числа и "деньги".

2. Домен

Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с подтипами в некоторых языках программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат "истина", то элемент данных является элементом домена. Наиболее правильной интуитивной трактовкой понятия домена является понимание домена как допустимого потенциального множества значений данного типа. Например, домен "Имена" в нашем примере определен на базовом типе строк символов, но в число его значений могут входить только те строки, которые могут изображать имя (в частности, такие строки не могут начинаться с мягкого знака). Следует отметить также семантическую нагрузку понятия домена: данные считаются сравнимыми только в том случае, когда они относятся к одному домену. В нашем примере значения доменов "Номера пропусков" и "Номера групп" относятся к типу целых чисел, но не являются сравнимыми. Заметим, что в большинстве реляционных СУБД понятие домена не используется, хотя в Oracle V.7 оно уже поддерживается.

3. Схема отношения, схема базы данных

Схема отношения - это именованное множество пар {имя атрибута, имя домена (или типа, если понятие домена не поддерживается)}. Степень или "арность" схемы отношения - мощность этого множества. Степень отношения СОТРУДНИКИ равна четырем, то есть оно является 4-арным. Если все атрибуты одного отношения определены на разных доменах, осмысленно использовать для именования атрибутов имена соответствующих доменов (не забывая, конечно, о том, что это является всего лишь удобным способом именования и не устраняет различия между понятиями домена и атрибута). Схема БД (в структурном смысле) - это набор именованных схем отношений.

4. Кортеж, отношение

Кортеж, соответствующий данной схеме отношения, - это множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. "Значение" является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Тем самым, степень или "арность" кортежа, т.е. число элементов в нем, совпадает с "арностью" соответствующей схемы отношения. Попросту говоря, кортеж - это набор именованных значений заданного типа.
Отношение - это множество кортежей, соответствующих одной схеме отношения. Иногда, чтобы не путаться, говорят "отношение-схема" и "отношение-экземпляр", иногда схему отношения называют заголовком отношения, а отношение как набор кортежей - телом отношения. На самом деле, понятие схемы отношения ближе всего к понятию структурного типа данных в языках программирования. Было бы вполне логично разрешать отдельно определять схему отношения, а затем одно или несколько отношений с данной схемой.
Обычным житейским представлением отношения является таблица, заголовком которой является схема отношения, а строками - кортежи отношения-экземпляра; в этом случае имена атрибутов именуют столбцы этой таблицы. Поэтому иногда говорят "столбец таблицы", имея в виду "атрибут отношения". Реляционная база данных - это набор отношений, имена которых совпадают с именами схем отношений в схеме БД.

Фундаментальные свойства отношений

1.Отсутствие кортежей-дубликатов

То свойство, что отношения не содержат кортежей-дубликатов, следует из определения отношения как множества кортежей. В классической теории множеств по определению каждое множество состоит из различных элементов. Из этого свойства вытекает наличие у каждого отношения так называемого первичного ключа - набора атрибутов, значения которых однозначно определяют кортеж отношения. Для каждого отношения по крайней мере полный набор его атрибутов обладает этим свойством. Однако при формальном определении первичного ключа требуется обеспечение его "минимальности", т.е. в набор атрибутов первичного ключа не должны входить такие атрибуты, которые можно отбросить без ущерба для основного свойства - однозначно определять кортеж. Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных.

2. Отсутствие упорядоченности кортежей

Свойство отсутствия упорядоченности кортежей отношения также является следствием определения отношения-экземпляра как множества кортежей. Отсутствие требования к поддержанию порядка на множестве кортежей отношения дает дополнительную гибкость СУБД при хранении баз данных во внешней памяти и при выполнении запросов к базе данных. Это не противоречит тому, что при формулировании запроса к БД, например, на языке SQL можно потребовать сортировки результирующей таблицы в соответствии со значениями некоторых столбцов. Такой результат, вообще говоря, не отношение, а некоторый упорядоченный список кортежей.

3. Отсутствие упорядоченности атрибутов

Атрибуты отношений не упорядочены, поскольку по определению схема отношения есть множество пар {имя атрибута, имя домена}. Для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута. Это свойство теоретически позволяет, например, модифицировать схемы существующих отношений не только путем добавления новых атрибутов, но и путем удаления существующих атрибутов. Однако в большинстве существующих систем такая возможность не допускается, и хотя упорядоченность набора атрибутов отношения явно не требуется, часто в качестве неявного порядка атрибутов используется их порядок в линейной форме определения схемы отношения.

4. Атомарность значений атрибутов .

Значения всех атрибутов являются атомарными. Это следует из определения домена как потенциального множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества значений (отношения). Принято говорить, что в реляционных базах данных допускаются только нормализованные отношения или отношения, представленные в первой нормальной форме
Реляционная модель данных. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части. В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение. В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка.

Целостность сущности и ссылок. Наконец, в целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей . Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Как мы видели в предыдущем разделе, это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений. Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений.

Реляционные операции и счисление.

Предложив реляционную модель данных, Э.Ф.Кодд создал и инструмент для удобной работы с отношениями – реляционную алгебру. Каждая операция этой алгебры использует одну или несколько таблиц (отношений) в качестве ее операндов и продуцирует в результате новую таблицу, т.е. позволяет "разрезать" или "склеивать" таблицы (рис. 3.3).

Рис. 3.3. Некоторые операции реляционной алгебры
Созданы языки манипулирования данными, позволяющие реализовать все операции реляционной алгебры и практически любые их сочетания. Среди них наиболее распространены SQL (Structured Query Language – структуризованный язык запросов) и QBE (Quere-By-Example – запросы по образцу) [ , ]. Оба относятся к языкам очень высокого уровня, с помощью которых пользователь указывает, какие данные необходимо получить, не уточняя процедуру их получения. С помощью единственного запроса на любом из этих языков можно соединить несколько таблиц во временную таблицу и вырезать из нее требуемые строки и столбцы (селекция и проекция).

Реляционная модель базируется на теоретико-множественном понятии отношения. В математических дисциплинах существует понятие «отношение » (relation), физическим представлением которого является таблица . Отсюда и произошло название модели - реляционная .

Применительно к БД понятия «реляционная БД» и «табличная БД» являются синонимами. Реляционные базы получили наибольшее распространение в мире. Почти все продукты БД, созданные с конца 70-х годов, являются реляционными.

В 1970 году появились работы, в которых обсуждались возможности применения различных табличных моделей данных. Наиболее значительной из них была статья сотрудника фирмы IBM д-ра Э. Кодда (Codd E.F., A Relational Model of Data for Large Shared Data Banks (Реляционная модель данных для больших совместно используемых банков данных). CACM 13: 6, June 1970), где впервые был применен термин "реляционная модель данных" . Проект System R был разработан в исследовательской лаборатории корпорации IBM. Этот проект был задуман с целью доказать практичность реляционной модели. Реляционные СУБД относятся к СУБД второго поколения.

Цели создания реляционной модели данных:

1. Обеспечение более высокой степени независимости от данных.

2. Создание прочного фундамента для решения проблем непротиворечивости и избыточности данных.

3. Расширение языков управления данными за счет включения операций над множествами.

Коммерческие системы на основе реляционной модели данных начали появляться в конце 70-х - начале 80-х годов. В настоящее время существует несколько сотен типов различных реляционных СУБД.

Реляционная модель является удобной и наиболее привычной формой представления данных в виде таблицы (отношения ). Каждое отношение имеет имя и состоит из поименованных атрибутов (столбцов) данных. Одним из основных преимуществ реляционной модели является ее однородность . Все данные хранятся в таблицах, в которых каждая строка имеет один и тот же формат. Каждая строка в таблице представляет некоторый объект реального мира или соотношение между объектами.

Основными понятиями, с помощью которых определяется реляционная модель, являются следующие:

- реляционная БД - набор нормализованных отношений;

- отношение - файл, плоская таблица, состоящая из столбцов и строк; таблица, в которой каждое поле является атомарным;

- домен - совокупность допустимых значений, из которой берется значение соответствующего атрибута определенного отношения. С точки зрения программирования, домен - это тип данных;

- универсум - совокупность значений всех полей или совокупность доменов;


- кортеж - запись, строка таблицы;

- кардинальность - количество строк в таблице;

- атрибуты - поименованныеполя, столбцы таблицы;

- степень отношения - количество полей (столбцов);

- схема отношения - упорядоченный список имен атрибутов;

- схема реляционной БД - совокупность схем отношений;

- первичный ключ - уникальный идентификатор с неповторяющимися записями - столбец или некоторое подмножество столбцов, которые единственным образом определяют строки.

Первичный ключ, который включает более одного столбца, называется множественным , или комбинированным , или составным , или суперключом .

Правило целостности объектов утверждает, что первичный ключ не может быть полностью или частично пустым.

Соотношение этих понятий иллюстрируется на рис. 4.5.

ФИО Год рожд. Должность Кафедра
1. Иванов И. И. Зав. каф. 22
2. Сидоров С. С. Проф. 22
3. Андреева Г. Г. Проф. 22
4. Цветкова С. С. Доцент
5. Козлов К. К. Доцент 22
6. Петров П. П. Ст. преп. 22
Атрибуты

рис. 4.5. Основные понятия реляционной модели данных.

Иногда в качестве первичного ключа в таблице могут быть выбраны разные столбцы. Выделенный ключ - ключ, явно перечисленный вместе с реляционной схемой. В противном случае говорят о неявном ключе, или возможном ключе, или ключе-кандидате.

- внешний ключ - это столбец или подмножество столбцов одной таблицы, которые могут служить в качестве первичного ключа для другой таблицы. Внешний ключ таблицы является ссылкой на первичный ключ другой таблицы. Поскольку целью построения БД является хранение всех данных, по возможности, в одном экземпляре, то если некий атрибут присутствует в нескольких отношениях, то его наличие обычно отражает определенную связь между строками этих отношений.

Внешние ключи реализуют связи между таблицами БД.

Внешний ключ, как и первичный ключ, может представлять собой комбинацию столбцов. На практике внешний ключ всегда будет составным, если он ссылается на составной первичный ключ другой таблицы. Количество столбцов и их типы данных в первичном и внешнем ключах должны совпадать.

Если таблица связана с несколькими другими таблицами, она может иметь несколько внешних ключей.

Каждая реляционная таблица обладает следующими свойствами :

Имеет имя, которое отличается от имен всех других таблиц;

Данные в ячейках таблицы должны быть структурно неделимыми. Недопустимо, чтобы в ячейке таблицы содержалось более одной порции информации. Например , номер и серия паспорта должны располагаться в разных столбцах таблицы;

Все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;

Каждый столбец имеет уникальное имя;

Одинаковые строки в таблице отсутствуют;

Порядок следования строк и столбцов может быть произвольным, независимо от их переупорядочивания отношение будет оставаться одним и тем же, а потому иметь тот же смысл.

Как уже говорилось, наиболее популярны реляционные модели данных. В соответствии с реляционной моделью данных данные представляются в виде совокупности таблиц, над которыми могут выполняться операции, формулируемые в терминах реляционной алгебры или реляционного исчисления.

В отличие от иерархических и сетевых моделей данных в реля­ционной модели операции над объектами имеют тео­ретико-множественный характер. Это дает возможность пользовате­лям формулировать их запросы более компактно, в терминах более крупных агрегатов данных.

Рассмотрим терми­нологию, используемую при работе с реляционными базами данных.

Первичный ключ. Первичным ключом называется поле или набор полей, однозначно идентифицирующих запись.

Нередко возможны несколько вариантов выбора первичного ключа. Например, в небольшой организации первичными ключами сущности "сотрудник" могут быть как табельный номер, так и комбинация фамилии, имени и отчества (при уверенности, что в организации нет полных тезок), либо номер и серия паспорта (если паспорта есть у всех сотрудников). В таких случаях при выборе первичного ключа предпочтение отдается наиболее простым ключам (в данном примере - табельному номеру). Другие кандидаты на роль первичного ключа называются альтернативными ключами.

Требования, предъявляемые к первичному ключу:

    уникальность – то есть в таблице не должно существовать двух или более записей с одинаковым значением первичного ключа;

    первичный ключ не должен содержать пустых значений.

При выборе первичного ключа рекомендуется выбирать атрибут, значение которого не меняется в течение всего времени существования экземпляра (в этом случае табельный номер предпочтительнее фамилии, так как ее можно сменить, вступив в брак).

По полям, которые часто используются при поиске и сортировке данных устанавливаются вторичные ключи : они помогут системе значительно быстрее найти нужные данные. В отличие от первичных ключей поля для индексов (вторичные ключи) могут содержать неуникальные значения.

Первичные ключи используются для установления связей между таблицами в реляционной БД. В этом случае первичному ключу одной таблицы (родительской) соответствует внешний ключ другой таблицы (дочерней). Внешний ключ содержит значения связанного с ним поля, являющегося первичным ключом. Значения во внешнем ключе могут быть неуникальными, но не должны быть пустыми. Первичный и внешний ключи должны быть одинакового типа.

Связи между таблицами . Записи в таблице могут зависеть от одной или несколь­ких записей другой таблицы. Такие отношения между таблицами называютсясвязями. Связь определяется следующим образом: поле или несколько полей одной таблицы, называемоевнешним ключом, ссылается на первичный ключ другой таблицы. Рассмотрим пример. Так как каждый заказ должен исходить от определенного клиента, каждая запись таблицыOrders (заказы) должна ссылаться на соответствующую запись таблицыCustomers (клиенты). Это и есть связь между таблицамиOrders иCustomers . В таблицеOrders должно быть поле, где хранятся ссылки на те или иные записи таблицыCustomers .

Типы связей . Существует три типа связей между таблицами.

Один к одному - каждая запись родительской таблицы связана только с одной запи­сью дочерней. Такая связь встречается на практике намного реже, чем отношениеодин ко многим и реализуется путем определения уникального внешнего ключа. Связь один к одному используют, если не хотят, чтобы таблица «распухала» от большого числа полей. Базы данных, в состав которых входят таблицы с такой связью не могут считаться полностью нормализованными.

Один ко многим - каждая запись родительской таблицы связана с одной или не­сколькими записями дочерней. Например, один клиент может сделать несколько заказов, однако несколько клиентов не могут сделать один заказ. Связь один ко многим является самой распространенной для реляционных баз данных.

Многие ко многим - несколько записей одной таблицы связаны с несколькими записями другой. Например, один автор может написать несколько книг и не­сколько авторов - одну книгу. В случае такой связи в общем случае невозможно определить, какая запись одной таблицы соответствует выбранной записи другой таблицы, что делает неосуществимой физическую (на уровне индексов и триггеров) реализацию такой связи между соответствующими таблицами. Поэтому перед переходом к физической модели все связи "многие ко многим" должны быть переопределены (некоторые CASE-средства, если таковые используются при проектировании данных, делают это автоматически). Подобная связь между двумя таблицами реализу­ется путем создания третьей таблицы и реализации связи типа «один ко многим» каждой из имеющихся таблиц с промежуточной таблицей.

Введение

Начавшийся XXI век специалисты называют веком компьютерных технологий. Человечество вступает в принципиально новую информационную эпоху. Меняются все слагаемые образа жизни людей. Уровень информации становится одной из характеристик уровня развития государства.

Многие развивающиеся страны осознали на должном уровне те преимущества, которые нет с собой распространение и развитие информационно-коммуникационных технологий. И не у кого не возникает сомнений тот факт, что движение к информационному обществу, это своего рода путь, который направлен в будущее человеческой цивилизации.

На основании реляционной модели база данных представляет собой определенную совокупность таблиц, над которыми выполняются операции, которые формулируются в терминах реляционной алгебры и реляционного исчисления.

В реляционной модели операции относительно объектов базы данных обладают теоретико-множественным характером являясь ядром любой базы данных. Модель представляет множество структурных данных, ограничений целостности и операций манипулирования данными.

Базовые понятия реляционной модели данных

Основными понятиями свойственными для реляционных данных считаются тип данных, домен, атрибут, кортеж, первичный ключ отношение. Первоначально отметим смысл этих понятия на примере отношения «СОТРУДНИКИ», содержащего информацию относительно сотрудников некоторой организации

Понятие тип данных соизмерим в реляционной модели данных с понятием типа данных в языках программирования. В современных реляционных базах данных имеет место хранение символьных числовых данных, битовых строк, а также специальных "темпоральных" данных, которые достаточно активно развиваются в процессе подхода к расширению возможностей реляционных систем.

Понятие домена обладает определенной спецификой для баз данных, хотя и обладают некоторой антологией с одтипами относительно некоторых языков программирования. Вообще домен определяется заданием некоторого базового типа, к которому имеет отношение элемент домена и произвольного логического выражения, нашедшего применение в элементе типа данных. В том случае, когда вычисление этого логического выражения представляет результат "истина", элемент является элементом домена.

Более правильной трактовкой понятия домена считается само понимание домена, как одного из допустимых потенциальных множеств значений данного типа.

Например, домен "Имена" в нашем случае на базовом типе срок символов он определен, но число его значений войдут только те сроки, которые способны изображать имя) такие сроки не могут начинаться с мягкого знака). Также необходимо отметить семантическую нагрузку понятия домена: только в том случае данные будут сравнимыми, когда будут иметь отношение к домену, но только одному

В нашем случае значения доменов "Номера пропусков" и "Номера групп", которые имеют отношение к типу целых числе, не может быть сравнимым. Отметим, что в некоторых случаях в реляционных СУБД само понятие «домена» не находит применение, т.к. уже поддерживается в Oracle V.7.

Схема отношения представляет собой именное множество пар: что включает: имя атрибута, тип, но только в том случае, когда понятие домена не поддерживается. Степень «артность» представляет собой схемы отношения - это определенная мощность это множества.

При этом отношения «Сотрудники» будет равна четырем и считаться 4-арным. А если все атрибуты одного отношения определены на относительно разных доменах, использовать осмысленно для именования атрибутов имена соответствующих доменов, не забывая при этом, о том, что это считается только лишь одним из удобных способом именования и не предоставляет возможность для устранения различий относительно понятия домена и атрибута. Схема базы данных - это определенный набор схем отношений.

Кортеж, который соответствует данной схеме отношения представляет собой множество пар, которое находит отражение в вхождении каждого имени атрибута, принадлежащего схеме отношения.

"Значение" считается допустимым значением домена данного атрибута, в том случае, когда понятие домена не поддерживается. В результате степень кортежа, т.е. число определенных элементов совпадает с степенью соответствующей схемы отношения

Кортеж - это набор именных значений заданного типа.

Отношение - это большое количество кортежей, которые соответствуют одной схеме отношения. В действительности, понятие схемы отношения ближе к понятию структурного типа данных в языках программирования было заголовком, а отношение как набор кортежей было телом отношения. Поэтому было бы логично разрешать определять схему отношения отдельно, а в последствии одно или несколько отношений данной схемой, но реляционных базах данных это не принято.

Имя схемы отношения относительно таких баз данных в большинстве случаев совпадает с именем соответствующего отношения-экземпляра. В классических реляционных базах данных после определенной схемы базы данных только отношения-экземпляры изменяются. Могут в них появляться новые и удаляться или изменяться существующие кортежи. Но в тоже время во многих реализациях находит место изменение схемы базы данных: определение новых и изменение уже существующих схем отношения, что принято называть эволюцией схемы базы данных.

Обычным представлением отношения считается таблица, заголовком которой считается схема отношения, а строками - кортежи отношения-экземпляра, в этом случае имена атрибутов именуют столбцами этой таблицы. В связи с этим иногда говорят " столбец таблицы", подразумевая " атрибут отношения". Как видно, основные структурные понятия реляционной модели данных (если не считать понятия домена) имеют очень простую интуитивную интерпретацию, хотя в теории реляционных БД все они определяются абсолютно формально и точно.

Загрузка...